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Abstract

In this paper we present a model of urban growth and its preliminary applica-
tion to a case study of the phenomena of residential development in the setting of
the eastern periphery of Rome, Italy’s capital city. The modeling approach we use
synthesises the two typical paradigms widespread in the community of quantita-
tive urban planning: the traditional one, based on cellular automata (CA), and the
(relatively) new one, which is agent-based. In particular, our multi-agent system
(MAS) is in-between a reactive MAS, with agents carrying out a two-staged deci-
sion process in a complex environment, and a model of statistical physics, since
we use populations of agents in order to reduce the number of degrees of free-
dom of the system. While we explicitly model the consumption of agricultural
and undeveloped land due to urban growth, our model may be easily integrated
as a socio-economic part into a wider decision support system for environmental
planning, e.g. our simulations can produce indicators of environmental impact of
the growth of the city: electricity consumption, waste production, etc.

1 INTRODUCTION
It is now a matter of fact that the complex systems perspective has been fully accepted
in urban and regional planning studies. Since their introduction, the two major bottom-
up approaches, the one of multi-agent systems (see [2, 3]) and cellular automata (see
[11, 4]) have contended for the lion’s share of the literature, with the current trend to
synthesize the best from both approaches. The work we present in this paper is based
on one recent attempt to provide such an interpolation (see [10] for a primer to this
methodology, and the references therein) and deals with the development of a major
urban area characterized by sprawling phenomena and unregulated residential growth
for many decades. From a methodological point of view, connecting MAS with CA is
attractive because it turns out to be very easy to model a urban or geographical system
with such a combination of approaches. The baseline is to identify “mobile” entities
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in the cognitive agents, such as the inhabitants of a city and to subdivide, on the other
hand, the urban area in a regular lattice. One then models more or less faithfully the
behaviour of the agents, usually at the cognitive level, while assigning to each cell a
label describing the urban typology of the part of territory assigned to it. This proce-
dure usually takes the form of the analysis, design and implementation of a software
simulator of the complex interactions between agents and the cells, and the simulations
produced with such a tool may provide valuable informations of the phenomena one
wants to investigate. It is widely accepted that the introduction of multi-agent systems
solved the problem of providing a meaningful description of the processes of land use
change undergoing in the system, without the need to describe these in terms of ab-
stract interactions between the cells of a CA: it is much more convenient to describe
in terms of the agents those socio-economical interactions that – at least one empiri-
cally assumes – drive the urban transformations of a city, rather than account for the
existence of an ubiquitous process of “update”, only indirectly based on the same in-
teractions, and only explainable in terms of the local state of the neighbourhoods on
the lattice of cells. However, this combined approach has disadvantages, no matter the
degree of fidelity on can achieve with a well engineered software simulator. It is in fact
difficult to calibrate and validate the simulations produced with it, and many times a
proper sensitivity analysis is only able to identify critical parameters of the model, but
not to truly assess what the uncertainty in the simulations’ measurements is due, espe-
cially in presence of bifurcations or phase transitions of the original system. It seems
thus important to provide a modelling framework that gives a proper mathematical def-
inition of the entities one is going to model, and that at the same time contemplates
the possibility to build a software simulator that cheaply outputs interesting scenarios
about the future evolution of the city.

The work we present in this paper is an attempt to go in this direction. The structure
of the paper is the following: in section 2 we introduce the main mathematical features
of our model, and in particular in 2.1 we detail respectively how the collective decisions
of the agents can produce the stochastic dynamics for the evolution of the cellular
automaton, and in section 2.2 we look at how it is possible to synthesize a description
of the city that enables each agent to take realistic decisions about urban events. In
section 3 we discuss the preliminary results we got from running simulations under
the assumptions of a stationary dynamics for the configuration of the system. Finally,
in section 4 we discuss how the integrated approach to the production of computer
tools for environmental assessment and decision making could benefit from our simple
methodology.1

2 A spatial model of urban growth and intelligent agents
To a first approximation, with the CA we model the land uses of the urban system. As
is usual for this kind of models, each cell of the CA is a 2-dimensional representation of
a given piece of land belonging to the urban area. Our choice was to consider each cell
corresponding to an administrative zone, as used in the master plan of the city; thus, we
have an irregular lattice Γ, with adjacency relations between cells given by the actual
geographical boundaries between zones. Figure 1 shows the cellular decomposition of
the CA used in the case study of Rome.

We take a state space which is real-valued and multidimensional, with each cell
c ∈ Γ described by a vector of dynamical variables v(c, t) ∈ Rp, subject to the up-
date rule of the automaton, and by some control variables that follow an exogenous

1For additional material on this model, please see the following: http://www.inf.unisi.ch/phd/ciampaglia
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Variable Description Update rule
N Total number of free available flats in the cell N + ∆n
Su Total undeveloped surface in the cell Su − (∆s1 + ∆s2)
Sb Total built surface due to residential use Sb + ∆s1

Sp Total built surface due to parkings and paved use Sp + ∆s2

Table 1: Update rule of the state of a cell due to the construction of an apartment
building

dynamics, w(c, t) ∈ Rq . Dynamical variables are chosen to have a clear urban and
geographical meaning. Examples include: number of households, total surface area
of residential buildings, total surface area of empty land. In w there are instead vari-
ables that are not directly subject to the update rule of the automaton: distances from
hospitals and services, access points to the transportation network, and other features
related to infrastructure. The variables in w(c, t) can be used to define exogenously
the settings for a simulative scenario. Taking v and w together for each cell c, the
system is described by a n by d matrix X(t) where n = |Γ| and d = p + q. The rule
that updates the state of the cells of the automaton is not specified as a deterministic
function, with fixed adjacency neighbourhood, as in the classical specification of CA.
Instead, the updates of the cells’ state are performed by decisor agents: the basic idea
is that social entities interact locally with the city – that is, agents interact with cells –
with possible interactions stereotyped by the elements of a set A of kinds of interac-
tions.2 in modeling the elements of A, we have in mind classes of events with a clear
urban meaning and scope, e.g.: construction of houses, malls and offices, changes in
zoning regulations of free lots. It is thus possible to model very easily the effects of
these simple interactions; see table 1 for an example of the update rule used to model
the construction of an apartment building.

More formally, each α ∈ A
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Figure 1: Cellular subdivision of the urban area in
the case study of the eastern periphery of Rome,
Italy.

defines an incremental stochastic
dynamic of the form:

vk(c, t+ ∆t) = vk(c, t) + πk(ω, c, t)
(1)

for k ∈ Vα ⊆ {1, . . . , p}, e.g. for
some of the variables that make
up the components of v(c, t). We
take the standard assumptions so
that the counting variablesNα,B(c, t)
of the number of events of kind α,
with increments π ∈ B ⊆ Rn(α),
and occurring in c during the time
interval [t, t + ∆t), have law de-
fined by the Poisson distribution with parameter λα,B(c, t). Thus we need to compute
the intensity of a non-homogeneous Poisson process (see [7]); the idea is to define it
in terms of a density λα:

λα,B(c, t) =
∫
B

λα(c, π, t)dπ (2)

2we say “social entity” since an agent may also be e.g. an enterprise looking for a venue where to open a
new office.
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where λα(c, π, t) is the density of probability that in [t, t+∆t), with ∆t small enough,
one interaction of kind αwith increments in [π, π+∆π) occurs in c. We then introduce
the conditional probability βα(c, π, t), that one event has increments in [π, π + ∆π),
given it actually occurred. Then obviously λα(c, π, t) = λα(c, t) · βα(c, π, t), where

λα(c, t) =
∫

Rn(α)
λα(c, π, t)dπ (3)

This means that we are able to decouple the problem of modelling an interaction of
kind α into two sub-models: the first accounts for how many interactions occur in
a cell during a small time interval, the second allows us to generate the values that
characterize the event that results from of an interaction between an agent and a cell. If
we consider ∆t to be the time unit, then λα,B(c, t)∆t is the average number of events
per time unit. Of course, in the spirit of CA modeling, this quantity has to depend on
the local configuration of the system, where the concept of ‘locality’, for any given
α, plays the same role of that of neighbourhood in the classic definitions of CA. A
reasonable assumption for this class of systems is that, for values of ∆t small enough,
the information about the events occurring in a cell during ∆t does not change the
configuration of the system, so that the intensities are constant during the time interval.
This assumption let us to recover a time homogeneous process for each step of update
of the system, which is of great aid in the simulation of the process.

2.1 Decision dynamics of the multi-agent system
We now briefly detail the first of the two sub-models, which enables us to compute
λα(c, t). Each α has a population of decisor agents. Unlike those MAS where each
agent is equipped with a complex agenda and models faithfully a given sociological
class of individuals, we take the opposite approach and reduce the degree of freedoms
of the system by describing populations of temporary and anonymous agents. An agent
may be inactive, or may be active and locatable in a specific zone, e.g. resident in a
cell. The decision process of an agent is composed of four actions or steps: activation
(A), diffusion (D), update (U) and leaving (L). After activation, an agent ‘enters’ into
the automaton and is placed in a cell. From there it may either diffuse – that is, jump –
to another cell, update the state of the cell by realizing an event of kind α (and subse-
quently become inactive and ‘exit’ the CA), or leave the decision process and become
inactive, with the same consequences of the update step. We define four processes, at
the global level of the whole automaton, for the above actions. Let these processes have
each intensity Λαi , for i ∈ {A,L,D,U}. This means that, as an example, ΛαA is the
average number of agents belonging to the population of agents α that become active
in any cell of the CA per time unit. The idea is to consider the global intensities Λαi
as parameters of the model and then, thanks to the property of composition of Poisson
processes, distribute (or, generally speaking, assign) the overall rate of activations, dif-
fusion, etc. among the cells. The following four formulas explain how this idea is put
in practice:

λαA(c, t) = ΛαA(t) · Fα(c, t)∑
c′∈Γ F

α(c′, t)
λαD(c, t) = ΛαD ·

Fα(c, t)∑
c′∈Γ F

α(c′, t)
(4)

λαL(c, t) = ΛαL λαU (c, t) = ΛαU ·Gα(c, t) (5)

The first formula says that the intensity for activations of agents in a cell c is distributed
proportionally to a global ‘attractivity’ force Fα(c, t). Intuitively speaking, Fα(c, t)
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models how much the cell c is favorable to the occurrence of interactions of kind α
due to the regional context in which c is: it integrates informations at a macroscopic
or regional level, such as residential centrality in the case when α is the interaction of
renting a flat; a similar definition has been used in the second formula for the intensity
λαD(c, t), of jumps that have cell c as a target, that is, regardless of the origin cell.
The effect of these two definitions is to bias the exploration of the urban space, that
the agents do during their life cycle, towards those areas of the city that exercise more
force of attraction than others. The dependency of ΛαA(t) on time, as we shall see
later, lead us to manipulate the number of events of kind α that actually occur during
a simulation. The third formula defines the average time an agent spends in the active
state to be 1/ΛαL. The intensity λαU (c, t) is proportional to another attractivity force
called Gα(c, t), which integrates information on the state of c, as usual with respect to
α, at a more local and detailed level.

Before getting into the discussion on our approach to the modeling of the configu-
ration of the system, that is, on the definition of Fα and Gα, we have to explain how,
starting from the intensities of the local processes, the above definitions are brought
together and give the overall dynamics of the MAS along a simulation’s step [t, t+∆t).
In turn, this let us to compute the intensities λα(c, t) of the non-homogeneous pro-
cesses of update events of the CA’s state. If we analyse the number of agents entering
and leaving a cell due to the four actions just introduced, we can derive a first order
differential equation for the probability Pα(c, t) on the space of the states of an agent:

dPα

dt
=

Fα(c, t)
Tα(t)

·
(
Pα(Γ, t) · ΛαA(t) + (1− Pα(Γ, t)) · ΛαD

)
+

− Pα(c, t) ·
(

ΛαD + ΛαL + ΛαU ·Gα(c, t)
) (6)

Where Tα(t) =
∑
Fα(c, t) is the normalizing factor, and Pα(Γ, t) is the probability

that an agent is passive and thus not in any cell of Γ. It is then possible to find a
solution, for the stationary case dPα/dt = 0:

Pα(c, t) =
Fα(c, t) ·

(
Pα(Γ, t) · ΛαA(t) +

(
1− Pα(Γ, t) · ΛαD

) )
Tα(t) · (ΛαD + ΛαL + ΛαU ·Gα(c, t))

(7)

The assumption of stationarity is motivated by the fact that the configuration of the
system is determined by variables that, with respect to Pα, have a slow dynamics. Now,
since we are dealing with Poisson processes, λαU (c, t) approximates the probability that
one event occurs in a small time step of duration ∆t; thus λαU (c, t) · Pα(c, t) gives the
probability that an active agent performs the update step in the cell – that is, that an
event occurs – and if we multiply that by the number of agents in the population,
we obtain the average number of events of kind α occurring in [t, t + ∆t). For this
construction to work properly, it is important to ensure that the number of events does
not fluctuate too much around this expected value. This condition is satisfied, thanks
to the law of large numbers, in the limit of the number of agents growing to infinity. In
practical simulations, this condition is usually fulfilled with a number of active agents
on the order of the thousands.

2.2 The urban configuration
As already stated, Gα(c, t) is the piece of information with which active agents decide
whether to make an update in the current cell or not. In [9], from which our work
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inherits the basic modeling framework, there is not a single and general model for such
a force; instead, the authors use fuzzy decision theory and develop several models of
Gα, one for each kind of event α ∈ A, by refining and aggregating multiple indicators
– by and large, demographic and geographic data – with the aid of fuzzy t-norms and
t-conorms. This approach is very powerful when empirical models of the different α
are available: in such cases fuzzy modeling is indeed a suitable tool for the translation
in the formal language of mathematics.

The definition of the force of attraction Gα(c, t) we give is inspired by principal
component analysis (PCA). PCA is a widely used technique for multivariate analysis
(see [6]), and can be also viewed as a simple form of unsupervised learning.3 A com-
mon data analysis task that can be done with PCA is the identification, for each principal
component, of a subset of the original variables that have highest correlation in abso-
lute terms with that component, beyond a certain threshold (see [5]). Usually human
experts are able to synthesize meaningful indices using the principal components. In
our case, if we look at how a kind of interaction α is defined, there’s already a subset of
variables having a special status with respect to α. These variables have their dynam-
ical behaviour influenced by interactions of kind α, that is, those with index k ∈ Vα
in equation (1). One can compute the cell’s scores, for these variables, in the space
spanned by the principal components, and assess the cell’s attractivity towards the kind
of interactions α by looking at those scores. This is, conceptually, the opposite of the
operation of principal components’ identification stated above: we choose to model the
force of attraction in terms of a fixed subset of variables, and then PCA automatically
synthesizes an index that measures how much any cell is attractive, with respect to
those variables. This technique has some disadvantages – which we’ll discuss later –
but it allows for a simple and general purpose model of the urban forces Gα.

LetX = X(t) be the dynamic matrix of multivariate data we apply PCA to.4 X is
constituted of n = |Γ| samples or data points, one for each cell c, and of d = p+ q ob-
servations of demographic and economic variables, that is, the concatenation of vectors
v(c, t) and w(c, t). The principal components are standardized linear combinations of
the urban variables, yk = a′kX . Since the variables have different units of measure,
we compute the coefficients ak by diagonalization of the sample correlation matrix R
of the data, R = ADA′: the ak are then the orthogonal columns of A. Since the
sample points are centered around their mean µ, for the i-th cell it is possible to com-
pute the projection on the k-th component component as yik = a′k(xi − µ). In the
terminology of PCA, yi1, . . . , yid are called the scores of the i-th sample. These ‘raw’
scores, however, are not suitable for computing an index. First, the original variable
we take into account might correlate negatively with the component. Since our data
are centered, and the transformation induced by the PCA is just a rotation of the space,
values of that variable that are less than the mean have actually negative score on the
component, while we want them to give a positive contribution to the total score of the
cell. A symmetric argument holds if the correlation is positive. Moreover, it is desir-
able to take into account how much of the variance of the original variable the principal
component is able to explain. Finally, since we are going to use this index to define an

3A very good review is [8], in which PCA is presented as a learning problem in a linear model with
latent variables, under the assumption that the hidden state is constant and constituted of independent normal
variables and that the linear dependency of the observations on the state is affected by additive Gaussian
noise with infinitesimal variation.

4Matrices are denoted by upper case bold letters, vectors are always column vectors and are denoted with
bold lower case letters; thus a′b is the scalar product of two vectors. When referencing matrices, i, j are the
row/column indices for the original data, while h, k always refer to the principal components.
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intensity, which is positive definite, we want each score to give a positive contribution
as well. Since it is possible to compute the correlation between the j-th variable and
the k-th component as ljk = ajk

√
λk, then the above considerations lead us to define

the contribution that each score gives as:

y∗ijk =
1
π

tan−1
( ljk yik − µjk

σjk

)
+

1
2

(8)

so that 0 < y∗ijk < 1. µjk and σjk are the sample mean and standard deviation of the
raw scores of the cells of the j-th variable with respect to the k-th principal component.
Now let us consider the i-th cell ci and the kind of interaction α. Let us denote with gα

the weighted sum of the scores (8) on the first r ≤ d principal components:

gα(ci, t) =
∑
j∈Vα

r∑
k=1

y∗ijk (9)

where, as stated, j is restricted to range in Vα, the subset of variables whose dynamics
is affected by the update rule of α. r is chosen so that the first r components explain
at least 50% of the variance of the original data. Finally, to define the dynamics of the
force Gα(ci, t), we introduce a temporal delay to smooth the changes of the term in
(9):

Gα(ci, t+ ∆t) = (1− ε) Gα(ci, t) + ε gα(ci, t+ ∆t) for t > 0 (10)
Gα(ci, 0) = gα(ci, 0) (11)

where 0 < ε ≤ 1 acts as a learning rate.
The definition of Fα(c, t) ‘averages’ Gα(·, t) over the regional context of c:

Fα(c, t) =
∑
c′∈Γ

i(c′) h
(
d(c, c′)

)
Gα(c′, t) (12)

h(x) = h(x;m,n, h0) = m
(

1− xn

xn + h0

)
(13)

In (12) the regional context of a cell generalizes the concept of neighborhood of a CA by
means of a simple gravitational model: the contribution of each cell c′ is proportional
to Gα(c′, t) (e.g. its mass), and since (13) is a monotonically decreasing step function,
decreases with a measurement of the distance between the cells. Such a measurement,
which should be taken with respect to the transportation network of the city, is modeled
by the term i(c′)h(d(c, c′)). Usually, the network is explicitly modeled as a labeled
digraph, and one takes a suitable graph-theoretic measure of integration of a node in
a graph; however, the only data we had for our case study were the distances, from
the center of mass of the developed areas of the cell, to the nearest access point to the
transportation network (dnet), hospital (dhos), university or school (dedu) and major
shopping or service center (dser). If we allow k to range in {net, hos, edu, ser}, our
integration measure is:

i(c) =
∏
k

h
(
dk(c); 2, n, µk

)
(14)

The parameter n = nk can be set so that the k-th factor ≈ 3/2 when µk − dk(c) ≈ σk,
which equals to reward those cells that are better integrated, and conversely to weight
less those that are ‘distant’ from hospitals, schools, etc. Finally, note that, by using in
(12) the euclidean distance d(c, c′) between the centers of the cells, we are taking the
gross assumption of a homogeneous transportation network.
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Figure 2: (a)–(e): Initial configuration of the CA. In each figure, the interval between
the minimum measurement of the variable and the maximum is mapped on a colormap,
such that the relative distribution of values on the cells is portrayed in terms of the dif-
ference between “warm” and “cool” colors. (a): Initial level of the housing stock. (b):
Initial amount of residential surface. (c): Initial amount of surface due to agriculture
or free land. (d): Initial resident population. (e): Initial amount of undeveloped or
interstial surface.

3 Simulation results
The model has been implemented for a case study on the eastern area of the city of
Rome, Italy. The CA has |Γ| = 40 cells, each grossly corresponding to an admin-
istrative zone,5 and each cell is described by d = 21 + 6 demographic and economic
variables. Figure 2 shows the initial configuration of the system, taking into account the
subset of the dynamical variables in v related to the phenomena of residential growth.
We performed multiple simulations to see if the model was able to show a plausible
behaviour with respect to the phenomena of residential growth of the area under study.
In these simulations we set ΛαA(t) = ΛαA(0) for every t and for every α ∈ A, so we
expect to see a stationary dynamics for the variables of the configuration of the system,
a condition easily checkable by inspecting that the trajectory of Gα(c, t), after a tran-
sient growth, reaches a steady level. The parameters ΛαL,Λ

α
D,Λ

α
U are set to constant

values so that agents from any population have, on the average, three jumps to explore
the CA before passing to the inactive state. The overall rate of events occurring during
a simulation is controlled by setting ΛA =

∑
α ΛαA to a constant value, and then taking

fixed ratios to define the global intensity of activation for each population of agents:
e.g. 20% of all activations are from the population of agents looking for a house, etc.
We varied ΛA from 0.1 to 10, and for each value we executed multiple simulations and
averaged v(c, t) over the simulations. We deem this strategy for the determination of
the activation rates to be reasonable, since the city is far from being in a period of ex-

5According to the Italian law, the zones we take into account are called “zone urbanistiche” and constitute
a refinement of the subdivision of the urban area into municipalities. In our model, we decided to further
subdivide some bigger zones into smaller parts, in order to keep them as homogeneous as possible. This
subdivision has been made with the aid of planners; see [1].
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pansion, and thus the balance between the rates of activity of the different processes is
unlikely to change significantly. On the other hand, by varying ΛA we can explore the
parameter space in a consistent way and test the dynamics of the systems at different
levels of activity. Figure 3 shows some of these results. The quantities in 3(a)–(e) are
aggregated over all cells of the city. These plots clearly show, with the exception for
the population, phenomena of saturated growth or consumption of the plotted variables.
Moreover, as ΛA grows it is possible to see a clear convergence to a stable trajectory.
For (a), (b) and (c) we computed the confidence intervals at 95% probability for the
parameters of a logistic growth / consumption model: while for the parameter corre-
sponding to the saturation threshold we get < 1% error for ΛA ≥ 3.4, the best we
can do to estimate the intercept of the logistic is an error of 12% for ΛA = 6.7. This
doesn’t surprise us, since the city is already at a late state of growth and thus we cannot
hope to give a good estimate for a parameter that is meaningful for an earlier period.
The scatter plots (f)–(i) instead give substantial informations about the patterns of res-
idential expansions occurred. They refer to ΛA = 10, and each point is a cell. It seems
clear that new houses are built in zones with a high residential density or in zones with
a substantial presence of local infrastructures. Since we deal with Poissonian diffusion
processes, agents explore a portion of the urban space, on average, only 3 jumps deep,
starting from the most attractive cells. Thus the patterns expressed in (f)–(i) give good
evidence that PCA, on which the urban and regional forces of attraction are defined,
provides a good model of residential centrality.

4 Integration for environmental impact assessment
It is possible to simulate the dynamical behaviour of the MAS with an asynchronous
algorithm that takes advantage of some properties of Poisson processes, namely that the
time between two jumps is exponentially distributed, and that the sum of independent
processes is still a Poisson process (a sketch of the algorithm is given in [10]). Since
the assumption of independence holds only for a time step of length ∆t, we recover
an evolution schema familiar to that of a CA. This means that the model could be
integrated very easily in an environmental decision support system (EDSS), even as a
simple routine call. At each time step, either the configuration of the system may be
updated by running the PCA, and thus producing new values of the force of attraction
F and G, or the value of the dynamical state v(c, t) of each cell c can be retrieved as
an output, (or both). Moreover, interaction issues with other subsystems – such as the
biophysical component of an EDSS – arising from a different time scale of simulation,
can be reduced by decoupling those two operations. Integration at the data level can
be done in a straightforward manner if the model has to produce only output values to
be fed into other components. In this case it is worth to note that we explicitly model
the dynamics of the population of the system (see figure 3(d)), as well as the number
of workers in local facilities of each cell (not shown in the figures). This just to name
a few examples. These can become the inputs to compute measurable indicators, and
thus evaluate the significance of the growth of the city on the environment. A more
pondered approach - instead - should be taken if data integration contemplates the
possibility to feed variables describing the status of the environment into our model. A
very simple operation would be to change (9) to allow a sum on more variables than
those in Vα, and thus it would be only needed to apply PCA to an augmented data matrix
X(t) with a new column for each environmental indicator one would like to consider.
As an example, for the event of buying a house, agents could then take into account

9



also informations about air and noise pollution in a cell.

5 CONCLUSIONS
The results we have discussed in this paper stem from a calibration that makes sev-
eral highly idealized assumptions, namely the choice of the values for ΛαD,Λ

α
L,Λ

α
U ,

which result in homogeneous decision process of the agents with respect to the kinds
of interaction α, and the dynamics of the global rate of activation ΛA, which lead to a
stationary dynamics of the system, which is motivated by the fact that the city in our
case study is already in a late stage of development. Nonetheless, our model was able
to show a meaningful urban dynamics of growth, with key factors such as saturation
due to depletion of resources (see figures 3(a), (b), (c) and (e)), and realistic decision
processes of urban agents. We thus believe that this model has the potential to produce
quantitatively precise scenarios of growth – given enough data to perform a proper
calibration. A shortcoming of our approach is the fact that PCA does not define a prob-
ability density model, and thus doesn’t allow one to compute the likelihood of data,
which can be problematic for the calibration of the forces of attraction Fα and Gα.
We will have to reflect about a proper calibration technique for this part of the model.
Some benefits of our approach are: (i) the dynamics of our MAS are mathematically
well defined so that one could study effects due to bifurcations or phase transitions an-
alytically, and not only through simulation, (ii) the asynchronous algorithm we use can
simulate many thousands of agents at once, (iii) this approach doesn’t have to create
coherent identities for various social classes of interest, (iv) update rules of the CA have
a clear urban meaning and are built up from simple events (e.g. building a house), (v)
we generalize a CA to have a real valued multidimensional state space, and this allows
a very easy integration in an EDSS and (vi) the cells of the CA correspond to real ad-
ministrative zones which would make it easier to policy makers and other stakeholders
to assess the model’s outputs.
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(b) Developed residential surface
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(f) Resident. density vs houses (t = 0)
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(g) Resident. density vs housing starts
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(h) Local services vs houses (t = 0)
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(i) Local services vs housing starts

Figure 3: (a)–(e): comparisons of time series of global variables; different curves in
each plot correspond to different values of the parameter ΛA, the global intensity of ac-
tivation of agents. (f)–(i): scatter plots of land use densities for residential building and
local infrastructures versus initial stock level and new housing starts; in these graphs
ΛA is taken to be equal to 10.
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