#### **Cross-domain Gender Detection in Twitter**

Mohsen Sayyadi and Giovanni L. Ciampaglia, Alessandro Flammini School of Informatics and Computing Indiana University, Bloomington, IN

Computational Approaches to Social Modeling Workshop of SOCINFO16



# Introduction



- Computational approaches to social modeling increasingly rely on data from online social media
- Not all the required attributes are always available
- Some interesting attributes may not be available
  - Although vast amount of structured and unstructured data are available

# Introduction



- Latent feature engineering on social network:
  - like age, gender, occupation
  - Supervised fashion
  - Unstructured textual data from online profiles along with other metadata are used
- Prior works are good but still not applicable sometimes
  - Usually domain specific
- Labeled training data are required
  - Often expensive to generate
  - Prior trained model are not general enough

# Challenge



- In every project we should start from scratch generating gold standards:
  - Time consuming
  - Sometimes not easy in case there is no picture or descriptive name
- Cross domain classification usually fails
  - Textual features are not portable



# Meeting the Challenge

- Employing more portable features along textual features:
  - screen names
  - profile avatar
- Using some advanced machine learning techniques
  - Train different models for different subsets

# **Cross Domain Classification**



- It has not been address seriously in the literature
  - Although mentioned that trained features were not portable to new datasets
- Reuse models across different domains
  - Training on a labeled dataset in order to mine the same latent attributes in new unlabeled datasets

# **Contributions of This Project**



- Propose a framework for gender detection on twitter
  - Using tweets, screen name and profile avatar
  - The trained model can be used for new datasets without need to build gold standard
- 1<sup>st</sup> time use of computer vision algorithm for gender detection of twitter users
- 1<sup>st</sup> model to be used for cross domain classification
- Best state of the art accuracy
  - 96% on the most famous benchmark (Ruths and Liu 2013)



# **Related Works**

- Domain-specific tools for gender detection Gender detection:
  - For in speech transcriptions, blogs, movie reviews, e-mail and search queries
- On social media
  - link-based and group-based classification

# **Related Works**

- Gender Detection on twitter:
  - Usually textual features are used
  - Sometimes self reported names are used for boosting the accuracy
  - Structural features analysis was not successful(although worked for Facebook)
- Profile avatar were used for building gold standard in several works but not as features

# ψ

## State of the Art

- Liu et al considered
  - textual features
  - First name
    - Most indicative signal of the gender of a person
- Best state of the art accuracy 86%
- Published their dataset

# **Proposed Framework**

- stacked classier approach
  - Chaining multiple estimators
  - yields a more robust classier

- Rely on weak classifiers
  - Text classifier
  - Name classifier
  - Image classifier



### Framework for Gender Inference

Ψ





## Data



- Dataset published by Ruths and Liu
- For each user, the numeric ID and a binary gender label are provided
- dataset is representative of the general Twitter population
- Selected a representative sample of users
  - who had posted at least 1,000 tweets over the lifespan of their accounts.
- Test Meta Classifier and analyze final results
- Twitter REST API were used to profile avatar and screen name and tweets
- Retweets and other simple form of near duplicates were removed

## **Final Datasets**



• We derived two different datasets with different amount of tweets for each user

| Dataset | Date range        | Tweets (avg) | σ   |
|---------|-------------------|--------------|-----|
| D1      | Jan 2014-Dec 2015 | 63           | 148 |
| D2      | Jan 2010-Dec 2014 | 530          | 871 |

# Name Classifier



- Information in the self-reported screen name
- Although some people use non-descriptive nicknames
- Microsoft Discussion Graph Tool (DGT) can simplify the task
- DGT generates the label `unknown' when it is not able to classify a user with confidence.
- Coverage:
  - the fraction of cases for which DGT emits a label other than `unknown
- 88% accuracy with 51% coverage



# Image Classifier

- Exploiting social media profile avatars has not been given much attention in the gender detection literature
  - at least compared to classification based on text and name
- Interestingly photos are used for building gold standards
- In prior work a sample of 15,000 random users and manually checking shows 57% of user profile pictures reflect the gender
- Publicly available Face++ library:
  - a naive deep learning face recognition tool
- Coverage:
  - the fraction of cases for which face++ could capture a face
- 87% accuracy with 32% coverage

# **Text Classifier**

- For preprocessing step
  - removed stop word
  - transformed tweets into vectors of unigram
- Sparse vectors were fed to SVMLight
- 74% accuracy on D1 and 82% on D2
- More tweets per user usually leads to higher accuracy
- 74% accuracy on D1
- 82% accuracy on D2

#### Performance of Base Classifiers



Performance of

Individual classifiers

| Classifie | er Dataset | Acc. | Rec. F | -score C | overage |
|-----------|------------|------|--------|----------|---------|
| Name      | D1 + D2    | 88%  | 88%    | 88%      | 51%     |
| Image     | D1 + D2    | 87%  | 88%    | 88%      | 32%     |
| Text      | D1         | 74%  | 63%    | 68%      | 100%    |
| Text      | D2         | 82%  | 92%    | 86%      | 100%    |

| <ul> <li>Correlation between base</li> </ul> |            | Pearson | Spearman |
|----------------------------------------------|------------|---------|----------|
| classifiers                                  | Image Name | 0.27    | 0.45     |
| Classifiers                                  | Image Text | 0.34    | 0.56     |
|                                              | Name Text  | 0.42    | 0.58     |

#### Performance of Meta Classifier



- Advanced ML techniques can find optimally weighted majority vote of weak classifiers
- Test with logistic regression also yields to better accuracy than previous state of the art

| Dataset | Acc.  | Rec.  | <b>F-score</b> |
|---------|-------|-------|----------------|
| D1      | 87.1% | 88.4% | 87.7%          |
| D2      | 95.9% | 97.1% | 96.5%          |

#### Comparison with old method

Ш



SCHOOL OF INFORMATICS AND COMPUTING



#### ROC Diagram of stacked classifier



SCHOOL OF INFORMATICS AND COMPUTING

#### Cross domain classification results



- Performance of our stacked classifier for cross domain classification task on a different dataset
- BLM dataset
  - #BlackLivesMatter prominent US social movement
- results indicates
  - name and profile avatar are portable features
  - text cannot be relied for cross domain classification
- stacked classifier with inter domain classification
  - 93.4 percent in accuracy which shows applicability of our method



#### Results of gender detection on BLM



| Dataset | feature set type A           | Acc. | Dataset | feature set type Acc.              |
|---------|------------------------------|------|---------|------------------------------------|
| BLM1    | text Inter. 58               | 8.1% | BLM2    | text Inter. 71.9%                  |
| BLM1    | text Cross. 58               | 8.9% | BLM2    | text Cross. $59.4\%$               |
| BLM1    | text + face Inter. 75        | 5.3% | BLM2    | text + face Inter. $88.3\%$        |
| BLM1    | text + face Cross. 63        | 3.3% | BLM2    | text + face Cross. $62.6\%$        |
| BLM1    | text + name Inter.           | 78%  | BLM2    | text + name Inter. $89.6\%$        |
| BLM1    | text + name Cross. 67        | 7.8% | BLM2    | text + name Cross. $63.5\%$        |
| BLM1    | face $+$ name Inter.         | 76%  | BLM2    | face $+$ name Inter. 76%           |
| BLM1    | face $+$ name Cross.         | 76%  | BLM2    | face $+$ name Cross. 76%           |
| BLM1    | text + face + name Inter.    | 85%  | BLM2    | text + face + name Inter. $93.4%$  |
| BLM1    | text + face + name Cross. 72 | 2.8% | BLM2    | text + face + name Cross. $71.1\%$ |

SCHOOL OF INFORMATICS AND COMPUTING

# Conclusion



- Computer vision algorithm can be used to boost the gender classifier on twitter
- Employing a stacked classification framework can be suitable for mixing weak classifiers
- Using portable features cross domain classification is doable
  - No need to make new gold standards
- Gender detection in doable when amount of tweets is not high

# **Future Works**



- Making more general model using boosted classifier
  - Using threshold classifier
  - If profile avatar or name are descriptive no need to consider text
- apply our framework to other platforms, like Google+
- Do more feature engineering for text classifier

## References



- 1. Alvarez, A., Sierra, B., Arruti, A., Lopez-Gil, J.M., Garay-Vitoria, N.: Classifier subset selection for the stacked generalization method applied to emotion recognition in speech. Sensors 16(1), 21 (2016), http://www.mdpi.com/1424-8220/16/1/21
- 2. Bartlett, J., Norrie, R., Patel, S., Rumpel, R., Wibberley, S.: Misogyny on twitter (2014), http://www.demos.co.uk/files/MISOGYNY\_ON\_TWITTER.pdf, last accessed: 2016-05-16
- 3. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on twitter. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. pp. 1301{1309. EMNLP '11, Association for Computational Linguistics,
- Stroudsburg, PA, USA (2011), http://dl.acm.org/citation.cfm?id= 2145432.2145568
- 4. Burger, J.D., Henderson, J.C.: An exploration of observable features related to blogger age. In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs. pp. 15{20 (2006)
- 5. Ciot, M., Sonderegger, M., Ruths, D.: Gender Inference of Twitter Users in Non-English Contexts. In: Proceedings of EMNLP (2013)
- 6. Conover, M., Goncalves, B., Ratkiewicz, J., Flammini, A., Menczer, F.: Predicting the political alignment of Twitter users. In: Proc. 3rd IEEE Conference on Social Computing (SocialCom) (2011)
- 7. Davis, C.A., Ciampaglia, G.L., Aiello, L.M., Chung, K., Conover, M.D., Ferrara, E., Flammini, A., Fox, G.C., Gao, X., Goncalves, B., Grabowicz, P.A., Hong, K., Hui,
- P.M., McCaulay, S., McKelvey, K., Meiss, M.R., Patil, S., Peli Kankanamalage, C., Pentchev, V., Qiu, J., Ratkiewicz, J., Rudnick, A., Serrette, B., Shiralkar, P., Varol, O., Weng, L., Wu, T.L., Younge, A.J., Menczer, F.: OSoMe: The JUNI

observatory on social media. PeerJ Preprints 4, e2008v1 (2016)

INFORMATICS

## References



- 8. Deitrick, W., Miller, Z., Valyou, B., Dickinson, B., Munson, T., Hu, W.: Gender identification on twitter using the modified balanced winnow. Communications and Network Vol.04No.03, 7 (2012), http://www.scirp.org/journal/ PaperInformation.aspx?PaperID=22061
- 9. Fulper, R., Ciampaglia, G.L., Ferrara, E., Menczer, F., Ahn, Y., Flammini, A., Lewis, B., Rowe, K.: Misogynistic Language on Twitter and Sexual Violence. In: Proc. ACM Web Science Workshop on Computational Approaches to Social Modeling (ChASM) (2014), http://dx.doi.org/10.6084/m9.figshare.1291081
- 10. Garera, N., Yarowsky, D.: Modeling latent biographic attributes in conversational genres. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2. pp. 710–718. ACL '09, Association for Computational Linguistics, Stroudsburg, PA, USA (2009), http://dl.acm.org/citation.cfm?id=1690219.1690245
- 11. Herring, S.C., Paolillo, J.C.: Gender and genre variation in weblogs. Journal of Sociolinguistics 10(4), 439–459 (2006), http://dx.doi.org/10.1111/j.1467-9841. 2006.00287.x
- 12. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. rep., Technical Report 07-49, University of Massachusetts, Amherst (2007)
- 13. Joachims, T.: Making large-scale svm learning practical. LS8-Report 24, Universita<sup>®</sup>t Dortmund, LS VIII-Report (1998)

#### References



- 14. Jones, R., Kumar, R., Pang, B., Tomkins, A.: "i know what you did last summer": Query logs and user privacy. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management. pp. 909–914. CIKM '07, ACM, New York, NY, USA (2007), http://doi.acm.org/10.1145/1321440. 1321573
- 15. Kiciman, E., Counts, S., Gamon, M., De Choudhury, M., Thiesson, B.: Discussion graphs: Putting social media analysis in context. In: Intl. Conf. on Weblogs and Social Media (ICWSM-14). AAAI (June 2014), http://research.microsoft.com/ apps/pubs/default.aspx?id=210256
- 16. Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Life in the network: the coming age of computational social science. Science 323(5915), 721 (2009)
- 17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (May 2015), http://dx.doi.org/10.1038/nature14539
- 18. Liu, W., Al Zamal, F., Ruths, D.: Using social media to infer gender composition of commuter populations. Sixth International AAAI Conference on Weblogs and Social Media abs/1405.6667 (2012)
- 19. Liu, W., Ruths, D.: what's in a name? using first names as features for gender inference in twitter. AAAI Spring Symposium Series abs/1405.6667 (2013)
- 20. Ludu, P.S.: Inferring gender of a twitter user using celebrities it follows. CoRR abs/1405.6667 (2014), http://arxiv.org/abs/1405.6667
- 21. Mislove, A., Lehmann, S., Ahn, Y.Y., Onnela, J.P., Rosenquist, J.N.: Understanding the Demographics of Twitter Users. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM'11). Barcelona, Spain (July 2011)
- 22. Mohammad, S.: Portable features for classifying emotional text. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. pp. 587–591. NAACL HLT '12, Association for Computational Linguistics, Stroudsburg, PA, USA (2012), http://dl.acm.org/citation.cfm?id=2382029.2382123
- 23. Moreno, J.L.: Who shall survive?: A new approach to the problem of human interrelations. Nervous and Mental Disease Publishing Co, Washington, DC, US (1934)
- 24. Nguyen, D.P., Gravel, R., Trieschnigg, R.B., Meder, T.: "how old do you think i am?" a study of language and age in twitter. In: Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media, ICWSM 2013, Cambridge, MA, USA. pp. 439–448. AAAI Press, Palo Alto, CA, USA (July 2013)
- 25. Nilizadeh, S., Groggel, A., Lista, P., Das, S., Ahn, Y.Y., Kapadia, A., Rojas, F.: Twitter's glass ceiling: The effect of perceived gender on online visibility. In: Tenth International AAAI Conference on Web and Social Media (2016)
- 26. Olteanu, A., Weber, I., Gatica-Perez, D.: Characterizing the demographics behind the #BlackLivesMatter movement. In: Proceedings of the AAAI Spring Symposia on Observational Studies through Social Media and Other Human-Generated Content (SSS'16 OSSM). Stanford, US (2016)

SCHOOL OF INFORMATICS AND COMPUTING





#### SCHOOL OF INFORMATICS AND COMPUTING