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Introduction
• Computational approaches to social modeling 

increasingly rely on data from online social 
media

• Not all the required attributes are always 
available

• Some interesting attributes may not be 
available 
– Although vast amount of structured and  

unstructured data are available



Introduction
• Latent feature engineering on social network:

– like age, gender, occupation
– Supervised fashion
– Unstructured textual data from online profiles along with 

other metadata are used

• Prior works are good but still not applicable sometimes
– Usually domain specific

• Labeled training data are required
– Often expensive to generate
– Prior trained model are not general enough



Challenge
• In every project we should start from 

scratch generating gold standards:
– Time consuming
– Sometimes not easy in case there is no picture 

or descriptive name

• Cross domain classification usually fails
– Textual features are not portable



Meeting the Challenge
• Employing more portable features along 

textual features:
– screen names
– profile avatar

• Using some advanced machine learning 
techniques
– Train different models for different subsets



Cross Domain Classification

• It has not been address seriously in the 
literature
– Although mentioned that trained features 

were not portable to new datasets

• Reuse models across different domains
– Training on a labeled dataset in order to mine 

the same latent attributes in new unlabeled 
datasets



Contributions of This Project
• Propose a framework for gender detection on twitter

– Using tweets, screen name and profile avatar
– The trained model can be used for new datasets without need 

to build gold standard

• 1st time use of computer vision algorithm for gender 
detection of twitter users

• 1st model to be used for cross domain classification
• Best state of the art accuracy

– 96% on the most famous benchmark (Ruths and Liu 2013)



Related Works
• Domain-specific tools for gender 

detection Gender detection:
– For in speech transcriptions, blogs, movie 

reviews, e-mail and search queries

• On social media
–  link-based and group-based classification



Related Works
• Gender Detection on twitter:

– Usually textual features are used
– Sometimes self reported names are used for 

boosting the accuracy
– Structural features analysis was not 

successful(although worked for Facebook) 

• Profile avatar were used for building gold 
standard in several works but not as features



State of the Art
• Liu et al considered
– textual features

– First name
• Most indicative signal of the gender of a person

• Best state of the art accuracy 86%

• Published their dataset



Proposed Framework
• stacked classier approach

– Chaining multiple estimators

–  yields a more robust classier

• Rely on weak classifiers
– Text classifier

– Name classifier

– Image classifier



Framework for Gender Inference



Data
• Dataset published by Ruths and Liu
• For each user, the numeric ID and a binary gender label are provided
• dataset is representative of the general Twitter population
• Selected a representative sample of users 

– who had posted at least 1,000 tweets over the lifespan of their accounts.

• Test Meta Classifier and analyze final results
• Twitter REST API were used to profile avatar and screen name and 

tweets
• Retweets and other simple form of near duplicates were removed



Final Datasets
• We derived two different datasets with different 

amount of tweets for each user



Name Classifier
• Information in the self-reported screen name
• Although some people use non-descriptive nicknames
• Microsoft Discussion Graph Tool (DGT) can simplify the 

task
• DGT generates the label `unknown' when it is not able to 

classify a user with confidence.
• Coverage:

–  the fraction of cases for which DGT emits a label other than 
`unknown

• 88% accuracy with 51% coverage



Image Classifier
• Exploiting social media profile avatars has not been given much 

attention in the gender detection literature
– at least compared to classification based on text and name

• Interestingly photos are used for building gold standards
• In prior work a sample of 15,000 random users and manually 

checking shows 57% of user profile pictures reflect the gender
• Publicly available Face++ library:

–  a naive deep learning face recognition tool

• Coverage:
–  the fraction of cases for which face++ could capture a face

• 87% accuracy with 32% coverage



Text Classifier
• For preprocessing step

– removed stop word 

– transformed tweets into vectors of unigram
• Sparse vectors were fed to SVMLight
•  74% accuracy on D1 and 82% on D2
• More tweets per user usually leads to higher accuracy
• 74% accuracy on D1
• 82% accuracy on D2



Performance of Base Classifiers

• Performance of 

Individual classifiers

• Correlation between base 

classifiers



Performance of Meta Classifier

• Advanced ML techniques can find optimally weighted 
majority vote of weak classifiers

• Test with logistic regression also yields to better 
accuracy than previous state of the art 



Comparison with old method



ROC Diagram of stacked classifier



Cross domain classification results

• Performance of our stacked classifier for cross domain 
classification task on a different dataset

• BLM dataset 
–  #BlackLivesMatter prominent US social movement

•  results indicates
– name and profile avatar are portable features
– text cannot be relied for cross domain classification

• stacked classifier with inter domain classification
– 93.4 percent in accuracy which shows applicability of our method



Results of gender detection on BLM



Conclusion
• Computer vision algorithm can be used to boost the gender 

classifier on twitter
• Employing a stacked classification framework can be suitable for 

mixing weak classifiers

• Using portable features cross domain classification is doable 
– No need to make new gold standards

• Gender detection in doable when amount of tweets is not high



Future Works
• Making more general model using boosted classifier

– Using threshold classifier 

– If profile avatar or name are descriptive no need to consider 
text

• apply our framework to other platforms, like Google+

• Do more feature engineering for text classifier
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