Online traces of human activity offer novel opportunities to study the dynamics of complex knowledge exchange networks, in particular how emergent patterns of collective attention determine what new information is generated and consumed. Can we measure the relationship between demand and supply for new information about a topic? We propose a normalization method to compare attention bursts statistics across topics with heterogeneous distribution of attention. Through analysis of a massive dataset on traffic to Wikipedia, we find that the production of new knowledge is associated to significant shifts of collective attention, which we take as proxy for its demand. This is consistent with a scenario in which allocation of attention toward a topic stimulates the demand for information about it, and in turn the supply of further novel information. However, attention spikes only for a limited time span, during which new content has higher chances of receiving traffic, compared to content created later or earlier on. Our attempt to quantify demand and supply of information, and our finding about their temporal ordering, may lead to the development of the fundamental laws of the attention economy, and to a better understanding of social exchange of knowledge information networks.